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ABSTRACT

Approximately 11 years of reforecasts from NOAA’s Second-Generation Global Ensemble Forecast

System Reforecast (GEFS/R) model are used to train a contiguous United States (CONUS)-wide gridded

probabilistic prediction system for locally extreme precipitation. This system is developed primarily using the

random forest (RF) algorithm. Locally extreme precipitation is quantified for 24-h precipitation accumula-

tions in the framework of average recurrence intervals (ARIs), with two severity levels: 1- and 10-yr ARI

exceedances. Forecasts aremade from0000UTC forecast initializations for two 1200–1200UTCperiods: days

2 and 3, comprising, respectively, forecast hours 36–60 and 60–84. Separate models are trained for each of

eight forecast regions and for each forecast lead time. GEFS/R predictors vary in space and time relative to

the forecast point and include not only the quantitative precipitation forecast (QPF) output from the model,

but also variables that characterize the meteorological regime, including winds, moisture, and instability.

Numerous sensitivity experiments are performed to determine the effects of the inclusion or exclusion of

different aspects of forecast information in the model predictors, the choice of statistical algorithm, and the

effect of performing dimensionality reduction via principal component analysis as a preprocessing step.

Overall, it is found that the machine learning (ML)-based forecasts add significant skill over exceedance

forecasts produced from both the raw GEFS/R ensemble QPFs and from the European Centre for Medium-

Range Weather Forecasts’ (ECMWF) global ensemble across almost all regions of the CONUS. ML-based

forecasts are found to be underconfident, while raw ensemble forecasts are highly overconfident.

1. Introduction

Locally extreme precipitation can cause a variety of

costly, disruptive, and endangering impacts, including

flooding, flash flooding, and landslides. In 2016 alone,

these hazards combined caused more than 120 fatalities

and $10 billion in damage over the United States (NWS

2017b). The prediction of flash floods is a notoriously

challenging forecast problem, requiring accurate pre-

diction not only of heavy rainfall magnitudes, but also of

the spatiotemporal distribution of that rainfall; of the

hydrologic interactions among precipitation, terrain,

and the land surface; and of antecedent precipitation

and its effects on soil conditions. Forecasting pre-

cipitation processes responsible for most observed ex-

treme rainfall over the contiguous United States

(CONUS) is often considered among the most chal-

lenging problems in contemporary numerical weather

prediction (NWP; e.g., Fritsch andCarbone 2004; Novak

et al. 2014). Given that the rainfall forecast alone pres-

ents such a considerable challenge, the additional hy-

drologic considerations in the flash flood forecast

problem present an even more daunting task. While

recent advances in heavy rainfall and flash flood fore-

casting have been made (e.g., Hapuarachchi et al. 2011;

Novak et al. 2014; Barthold et al. 2015), forecasts still

struggle in many situations (e.g., Delrieu et al. 2005;

Lackmann 2013; Schumacher et al. 2013; Gochis et al.

2015; Nielsen and Schumacher 2016; among many

others), and substantial progress remains to be made.

Contemporary operational dynamical forecast models

often struggle to simulate accurately the physical pro-

cesses responsible for extreme precipitation production.

For example, models with parameterized convection

often have a variety of persistent errors and biases as-

sociated with their depiction of convective systems,

which are responsible for the majority of flooding

rains over much of the CONUS (e.g., Schumacher

and Johnson 2006; Stevenson and Schumacher 2014;
Corresponding author: Gregory R. Herman, gherman@atmos.

colostate.edu

MAY 2018 HERMAN AND SCHUMACHER 1571

DOI: 10.1175/MWR-D-17-0250.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:gherman@atmos.colostate.edu
mailto:gherman@atmos.colostate.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


Herman and Schumacher 2016a). These include a ten-

dency to underpredict total rainfall from convective

systems (e.g., Schumacher and Johnson 2008; Herman

and Schumacher 2016a); produce systems displaced too

far to the north and west from where they are observed

(e.g., Grams et al. 2006; Wang et al. 2009; Clark et al.

2010); initiate convection too early (e.g., Davis et al.

2003; Wilson and Roberts 2006; Clark et al. 2007); gen-

erate systems with too large an areal extent (e.g., Wilson

and Roberts 2006); and propagate them incorrectly, too

slowly, or not at all (e.g., Davis et al. 2003; Pinto et al.

2015). While convection-allowing models (CAMs) can

better resolve the physical processes responsible for

heavy rainfall generation (e.g., Kain et al. 2006;

Weisman et al. 2008; Duda and Gallus 2013), they too

can suffer from many of these biases (e.g., Kain et al.

2006; Lean et al. 2008; Kain et al. 2008; Weisman et al.

2008; Herman and Schumacher 2016a). Furthermore,

although there is a plethora of CAM guidance out to the

day-ahead time frame (out to 36h to perhaps 48 h after

initialization), due to current computational constraints,

there is almost no operational CAM guidance running

out to 2 days ahead and nothing operational that runs to

3 days ahead or beyond. Instead, global ensembles with

parameterized convection serve as the primary source of

forecast information and uncertainty quantification at

these lead times. Nevertheless, there is considerable

utility in skillful extreme precipitation forecasts at these

longer lead times, since manymitigative actions may not

be feasible to execute in a matter of hours but are easily

accomplished with a day or more of warning. Statistical

postprocessing of global ensemble output can poten-

tially alleviate many of these dynamical model de-

ficiencies and provide skillful extreme precipitation

guidance at medium-range time scales. A specific focus

on the day 2–3 period is warranted due to the increased

existing operational emphasis on these lead times,

compared with even longer ones, such as the excessive

rainfall outlook produced by the Weather Prediction

Center (Barthold et al. 2015), which forecasts locally

excessive rainfall across the CONUS for days 1–3.

There is a long history of successful application of

statistical postprocessing to dynamical model output

(e.g., Klein et al. 1959; Glahn and Lowry 1972). Model

output statistics (MOS; e.g., Glahn and Lowry 1972) is a

simple, effective multivariate linear regression tech-

nique relating a set of dynamical model predictors to

sensible weather predictands, such as minimum and

maximum temperature, wind speeds, and precipitation

probability. This basic technique has long demonstrated

skill over both the underlying models and even human

forecasters (e.g., Jacks et al. 1990; Vislocky and Fritsch

1997; Hamill et al. 2004; Baars and Mass 2005) but is

inherently limited by the linear assumptions underlying

the method. Statistical postprocessing techniques have

also been successfully applied to QPFs, from early lin-

ear approaches (e.g., Bermowitz 1975; Antolik 2000) to

more contemporary techniques that can exploit more

complex variable relationships, including neural net-

works (e.g., Hall et al. 1999), reforecast analogs (e.g.,

Hamill and Whitaker 2006; Hamill et al. 2015), logistic

regression (LR; e.g., Applequist et al. 2002; Whan and

Schmeits 2018, manuscript submitted to Mon. Wea.

Rev.), random forests (RFs; e.g., Gagne et al. 2014;

Ahijevych et al. 2016; Gagne et al. 2017; Whan and

Schmeits 2018, manuscript submitted to Mon. Wea.

Rev.), and other parametric techniques (e.g., Scheuerer

and Hamill 2015; Whan and Schmeits 2018, manuscript

submitted to Mon. Wea. Rev.). For other meteorologi-

cal applications, other machine learning algorithms,

such as support vector machines (e.g., Zeng and Qiao

2011; Herman and Schumacher 2016b) and boosting

(e.g., Herman and Schumacher 2016b; Hong et al. 2016)

have also been successfully applied. Related techniques

have also been applied to forecasting related high-

impact phenomena, such as severe hail (Brimelow

et al. 2006; Gagne et al. 2015) and tornadoes (Alvarez

2014). One of the most powerful aspects of machine

learning algorithms—and RFs in particular—is finding

patterns and nonlinear interactions in the supplied

training data (e.g., Breiman 2001). Depending on the

extent and diversity of the data supplied in these ex-

periments, trained RFs pose the theoretical capability

of diagnosing and automatically correcting for various

kinds of model biases, including context-dependent

quantitative biases, such as QPF being systematically

too high or too low, spatial displacement biases in the

placement of extreme precipitation features, and, to

some extent, temporal biases in the initiation or pro-

gression of extreme precipitation features.

This study makes a comprehensive investigation of

using a global reforecast dataset to produce skillful

and reliable probabilistic forecasts of locally extreme

precipitation using the RF statistical postprocessing

technique in the medium range. The following section

provides further background and rigorously describes

the data and methods used, algorithms employed,

models trained, and experiments performed. Section 3

presents results of the sensitivity experiments con-

ducted, while section 4 presents the final results of the

trained models and provides two brief case studies il-

lustrating the process. Section 5 summarizes the find-

ings of this study, outlines complementary analysis of

these models, identifies avenues for further research,

and discusses the broader implications of the results on

numerical weather prediction and postprocessing.
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2. Data and methods

There are several successive steps applied in creating

the final forecasts evaluated in this study. A schematic

overview of the forecast pipeline for the models trained

in this study is depicted in Fig. 1. Many types of hydro-

meteorological information are first taken, then assem-

bled in a methodical manner, further preprocessed for

subsequent analysis, analyzed using a statistical machine

learning algorithm, and finally, extreme precipitation

forecast guidance is produced and evaluated. This sec-

tion details each of these steps in the model develop-

ment and evaluation process.

a. Datasets

Dynamical model data used for training the RF

models in this study come from NOAA’s Second-

Generation Global Ensemble Forecast System Refor-

ecast (GEFS/R; Hamill et al. 2013) dataset. The GEFS/R

is a global 11-member ensemble with parameterized

convection and T254L42 resolution—which corre-

sponds to an effective horizontal grid spacing of;55km

at 408 latitude—initialized once daily at 0000 UTC back

to December 1984. Perturbations are applied only to the

initial conditions and are made using the ensemble

transform with rescaling technique (Wei et al. 2008).

The ensemble system used to generate these reforecasts

is nearly static throughout its 301 year period of coverage,

though updates to the operational data assimilation sys-

tem over time have resulted in some changes in the bias

characteristics of its forecasts over the period of record

(Hamill 2017). Some forecast fields are preserved on the

native Gaussian grid (;0.58 spacing), while others are

available only on a 18 3 18 grid. Temporally, forecast fields

are archived every 3h out to 72h past initialization and

are available every 6 h beyond that. This study em-

ploys an almost 11-yr period of record to explore

this forecast problem, using daily initializations from

January 2003 through August 2013.

In creating probabilistic extreme precipitation fore-

cast guidance, the predictand must first be concretely

specified and a robust, consistent verification framework

established. One of the many challenges in heavy rain-

fall and flash flood forecasting is the considerable diffi-

culty in verifying events (e.g.,Welles et al. 2007; Gourley

et al. 2012; Barthold et al. 2015), as every approach

has its deficiencies and limitations. It is attractive to

consider the problem from a simple perspective of

quantitative precipitation estimate (QPE) exceedances

of some temporally static threshold. In particular, a

fixed threshold (e.g., 50mmh21) can be used as a proxy

for flash flooding (e.g., Brooks and Stensrud 2000;

Hitchens et al. 2013), as can exceedances of thresholds

defined relative to the local precipitation climatology

(e.g., Schumacher and Johnson 2006; Stevenson and

Schumacher 2014; Herman and Schumacher 2016a),

FIG. 1. Schematic representation of the forecast process for this study. GEFS/R forecasts are taken, assembled across fields, space, and

time to form a training matrix, and past observations are used to associate a label with each forecast initialization–forecast day–forecast

point triplet. The training matrix optionally undergoes preprocessing through PCA and then is input to one or more machine learning

algorithms. From here, probabilistic ARI exceedance forecasts may be readily generated.
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such as average recurrence intervals (ARIs). An ARI

defines a fixed frequency relative to the hydrometeo-

rological climatology of the region; in particular, it cor-

responds to the expected duration, given the local

climatology, between exceedances of a given threshold.

For example, the 1-yr ARI for 24-h precipitation accu-

mulations describes the accumulation amount for which

one would expect the mean duration between exceed-

ances of said amount to be 1 year. Past research has

shown that a fixed-frequency ARI-based framework has

better correspondence with heavy precipitation impacts

than the use of any fixed threshold across the hydro-

meteorologically diverse regions of the CONUS (e.g.,

Reed et al. 2007). From the perspective of forecast

verification, defining extreme precipitation with respect

to a fixed threshold exceedance raises challenges when

applied uniformly across the CONUS. For example, skill

differences observed between regions may simply be an

artifact of a regionally varying event climatology rather

than ‘‘true’’ regional differences in forecast skill (e.g.,

Hamill and Juras 2006). The ARI framework avoids this

issue and provides reasonable correspondence with pre-

cipitation impacts while avoiding the additional compli-

cations, such as antecedent conditions, local hydrology,

and urban effects (e.g., Herman and Schumacher 2016a),

and is consequently used to quantify extreme rainfall for

this study.

Specifically, forecast probabilities are issued for 24-h

ARI exceedances at each GEFS/R archive grid point on

its native Gaussian grid at all points across the CONUS,

using a predictand with three categories: 1) no 1-yr ARI

exceedance at any point within the gridpoint domain, 2)

at least one 1-yr ARI exceedance, but no 10-yr ARI

exceedances within the gridpoint domain, and 3) at least

one 10-yr ARI exceedance within the gridpoint domain.

For evaluation, probabilities from the middle and most

severe categories are often aggregated to produce a 1-yr

ARI exceedance probability. This approach has the

advantage of retaining aspects of the anticipated event

severity as would be retained in a regression context, but

is largely lost when performing single-category classifi-

cation. While there can be some additional complica-

tions, especially with respect to calibration, formulating

the prediction problem as a single multicategory classi-

fication task rather than multiple distinct binary cate-

gory models also ensures mathematical consistency of

the exceedance probabilities within the generated

probability mass functions in a way that the latter ap-

proach would not.

In aggregating multiple QPE-to-ARI threshold

gridpoint comparisons in a single predictand, the

forecasts issued correspond to neighborhood event

probabilities, an increasingly popular method of

communicating probabilistic high-impact weather

information in forecast operations (e.g., Barthold

et al. 2015; NWS 2017a). Counting any one of several

possible point exceedances as an ‘‘event’’ results in

the event having a higher observed relative frequency

relative to that of any of the individual point ex-

ceedances; the event frequency in this framework

thus exceeds the purported frequency suggested by

the ARI. However, the fixed-frequency property, and

thus many of the aforementioned desirable proper-

ties of the framework, is approximately retained. For

this study, focus is placed exclusively on two 24-h

forecast periods: the 1200–1200 UTC period corre-

sponding to forecast hours 36–60 from the GEFS/R

forecast fields and the subsequent 24-h period en-

compassing forecast hours 60–84, denoted re-

spectively as days 2 and 3. At these times, there is

typically some knowledge to characterize the envi-

ronmental conditions in which precipitation may

form, but it is beyond the current range of operational

CAM guidance.

Verification comes from the National Centers for

Environmental Prediction (NCEP) stage IV pre-

cipitation analysis (Lin and Mitchell 2005) QPE prod-

uct, created operationally since December 2001. Stage

IV provides 24-h analyses over the CONUS on a;4.75-km

grid. It uses both rain gauge observations and radar-

derived rainfall estimates to generate an analysis and is

further quality controlled via NWS river forecast centers

(RFCs) to ensure stray radar artifacts and other spurious

anomalies do not appear in the final product. Despite

some limitations (Herman and Schumacher 2016a;

Nelson et al. 2016), its analysis quality, resolution, al-

lowing better ability to capture precipitation extremes

compared with other QPE products (e.g., Hou et al.

2014), and data record length make it preferable to

analogous products.

The ARI thresholds associated with the 1- and 10-yr

ARIs for 24-h precipitation accumulations are gener-

ated using the same methodology as Herman and

Schumacher (2016a), where CONUS-wide thresholds

are produced by stitching thresholds from several sour-

ces. NOAA’s Atlas 14 thresholds (Bonnin et al. 2004,

2006; Perica et al. 2011, 2013), an update from older

work and currently under development, are used

wherever they were available at the commencement of

this study. For five northwestern states—Washington,

Oregon, Idaho, Montana, and Wyoming—updated

thresholds are not available, and derived NOAAAtlas 2

threshold estimates are used instead (Miller et al. 1973).

Additionally, in Texas and the Northeast—New York,

Vermont, New Hampshire, Maine, Massachusetts,

Connecticut, and Rhode Island—Technical Paper 40
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(TP-40; Hershfield 1961) thresholds are used;1 every-

where else uses the Atlas 14 threshold estimates. The

10-yr ARI thresholds (Fig. 2b) show a similar spatial

pattern to the 1-yr ARI thresholds (Fig. 2a) but are

substantially higher everywhere. More significantly, it is

apparent that at both severity levels, there are large

regional disparities in the threshold magnitudes. Over

climatologically wet regions of the CONUS, such as the

Pacific coastal mountains and immediately along the

Gulf Coast, thresholds are as high as 100–150 and

250–300mm for 1- and 10-yr ARIs, respectively. Over

the central and eastern CONUS, thresholds tend to

decrease smoothly with increasing latitude and distance

from major bodies of water. Sharper variations are seen

in areas of complex terrain over the western CONUS. In

the driest parts of the arid Southwest and Intermountain

West, thresholds can be as low as 10–15 and 25–30mm

for the two ARI levels—a full order of magnitude

difference from the largest thresholds at the same

intensity level.

Forecast models in this study are trained separately

for eight distinct yet cohesive and internally fairly

hydrometeorologically homogeneous regions of the

CONUS, using the delineation indicated in Fig. 3. Ob-

served 1- and 10-yr ARI exceedance events that oc-

curred during the period of record (Figs. 2c,d) highlight

important regional differences in the seasonal clima-

tology of ARI exceedances across the CONUS. In the

Pacific coast (PCST) region, the vast majority of ex-

ceedances at both the 1- and 10-yr severity levels occur

in the cool season, largely from atmospheric river events

with large moisture transport impinging on coastal topog-

raphy (e.g., Rutz et al. 2014; Herman and Schumacher

2016a). This seasonality holds to a lesser extent in the

neighboring Southwest (SW) region, with some signal

FIG. 2. ARI thresholds at the (a) 1- and (b) 10-yr ARI levels over the CONUS for a 24-h accumulation interval.

Climatology of observed exceedances of the (c) 1-yr, 24-h and (d) 10-yr, 24-hARI thresholds between January 2003

and August 2013 based on stage IV precipitation analysis. Pie charts indicate the monthly distribution of event

occurrence within each study region, as shown in Fig. 3. Numbers above the pie charts indicate the mean number of

exceedances per point per year within the region (a priori 1 and 0.1 for 1- and 10-yr ARIs, respectively).

1 The northeastern states did receive updated Atlas 14 estimates

in October 2015, but TP-40 thresholds were retained for consis-

tency with prior work.
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carrying over to the Rockies (ROCK) region as well. In

the central and eastern regions, the majority of events

occur during the warm season from more scattered

convective-scale processes, particularly in the months of

May, June, and July (e.g., Schumacher and Johnson

2006; Herman and Schumacher 2016a). Tropical cy-

clones can cause widespread and very significant rainfall

and comprise a substantial portion of the extreme pre-

cipitation climatology, especially in the Northeast (NE)

and Southeast (SE) regions. Because of the spatial ex-

tent of their impacts and immense rainfall totals they can

produce, they form a much larger fraction of the cli-

matology of 10-yr ARI exceedances (Fig. 3d) than 1-yr

events (Fig. 3c). Additionally, the numbers are lower

than would be expected; by the explicit exceedance

frequencies associated with the thresholds, one would

expect an average of one exceedance per point per year

over the period of record for the 1-yr events (Fig. 3c) and

0.1 exceedances for 10-yr events (Fig. 3d). In reality,

event counts are only approximately half of that. This is

consistent with previous findings (e.g., Herman and

Schumacher 2016a) and likely in part attributable to

limitations in the stage IV product to capture extremes

(e.g., Nelson et al. 2016). There is also quite a bit of

region-to-region variability in event counts, particularly

for 10-yr exceedances, much of which is attributable to

statistical variability from having a short data record in

relation to the event frequency.

b. Predictor assembly

Input predictors, or features, to the random forests

can be partitioned into two categories: model predictors

and background predictors. The former constitute the

vast majority of inputs. Model predictors come from

atmospheric fields forecast in the GEFS/R, which bear a

known physical relationship with extreme precipitation.

A core set of f 5 9 fields used in this study are accu-

mulated precipitation (APCP), convective available

potential energy (CAPE), convective inhibition (CIN),

precipitable water (PWAT), surface temperature (T2M)

and specific humidity (Q2M), surface zonal (U10) and

meridional winds (V10), and mean sea level pressure

(MSLP). Sensitivity experiments explore the use of ad-

ditional upper-air atmospheric fields; a full list of fields

used in this study, their associated symbols used in this

manuscript, and the grids on which they are each ar-

chived is included in Table 1. The spatiotemporal vari-

ations in these fields are considered as well. Spatially,

predictors are structured in a forecast-point relative

sense. In the control model, GEFS/R forecast values up

to r 5 4 grid boxes (;28) latitudinally or longitudinally

displaced in any direction relative to the forecast point

are considered. Temporally, simulated fields are con-

sidered at each archive time during the forecast interval,

which corresponds to every 3h during the day 2 period

and every 6 h during the day 3 period, for a total of t5 9

FIG. 3. Map depicting the regional partitioning of the CONUS used in this study and the labels

ascribed to each region.
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and 5 forecast periods for the day 2 and 3 periods, re-

spectively. All told, this yields t f (2r1 1)2 model pre-

dictors, which yields, respectively, M 5 6561 and 3645

model predictors for the day 2 and day 3 control models.

The other category of predictors—background pre-

dictors (Table 2)—are those that are solely associated

with the forecast point and have no relation to the

present meteorology. These include the location of the

point, as well as the ARI characteristics of the point and

in the surrounding area.

c. Dimensionality reduction

There are a large number of model predictors, and

they are also highly correlated—spatially, temporally,

and across variables. With millions of training examples

and thousands of features, the forecast problem can

TABLE 1. Summary of dynamical model fields examined in this study, including the abbreviated symbol to which each variable is

referred throughout the paper, a description of each variable, the predictor group with which the field is associated in the manuscript text,

and the highest resolution for which the field can be obtained from the GEFS/R.

Symbol Description Predictor Group Grid

APCP Precipitation accumulation in past (3) 6 h Core Native Gaussian

CAPE Surface-based convective available potential energy Core Native Gaussian

CIN Surface-based convective inhibition Core Native Gaussian

MSLP Mean sea level pressure Core Native Gaussian

PWAT Total precipitable water Core Native Gaussian

Q2M Specific humidity 2m above ground Core Native Gaussian

T2M Air temperature 2m above ground Core Native Gaussian

U10 Zonal component of 10-m wind Core Native Gaussian

V10 Meridional component of 10-m wind Core Native Gaussian

Q300 Specific humidity at 300 hPa Upper-Air Extra 18 3 18
Q500 Specific humidity at 500 hPa Upper-Air Core 18 3 18
Q700 Specific humidity at 700 hPa Upper-Air Extra 18 3 18
Q850 Specific humidity at 850 hPa Upper-Air Core 18 3 18
T250 Temperature at 250 hPa Upper-Air Extra 18 3 18
T500 Temperature at 500 hPa Upper-Air Core 18 3 18
T700 Temperature at 700 hPa Upper-Air Extra 18 3 18
T850 Temperature at 850 hPa Upper-Air Core 18 3 18
U250 Zonal component of 250-hPa wind Upper-Air Extra 18 3 18
U500 Zonal component of 500-hPa wind Upper-Air Core 18 3 18
U700 Zonal component of 700-hPa wind Upper-Air Extra 18 3 18
U850 Zonal component of 850-hPa wind Upper-Air Core 18 3 18
V250 Meridional component of 250-hPa wind Upper-Air Extra 18 3 18
V500 Meridional component of 500-hPa wind Upper-Air Core 18 3 18
V700 Meridional component of 700-hPa wind Upper-Air Extra 18 3 18
V850 Meridional component of 850-hPa wind Upper-Air Core 18 3 18
W850 Vertical velocity (omega) at 850 hPa Upper-Air Core 18 3 18

TABLE 2. List of background predictors used in this study and their associated symbols and descriptions.

Symbol Description

ARI1_LOCAL_MEDIAN Median of 1-yr ARIs whose closest GEFS/R grid point is the forecast point.

ARI1_LOCAL_MIN Minimum of 1-yr ARIs whose closest GEFS/R grid point is the forecast point.

ARI1_LOCAL_MAX Maximum of 1-yr ARIs whose closest GEFS/R grid point is the forecast point.

ARI10_LOCAL_MEDIAN Median of 10-yr ARIs whose closest GEFS/R grid point is the forecast point.

ARI10_LOCAL_MIN Minimum of 10-yr ARIs whose closest GEFS/R grid point is the forecast point.

ARI10_LOCAL_MAX Maximum of 10-yr ARIs whose closest GEFS/R grid point is the forecast point.

ARI1_REGIONAL_MEDIAN Median of 1-yr ARIs that lie within the domain from which model predictors are drawn.

ARI1_REGIONAL_MIN Minimum of 1-yr ARIs that lie within the domain from which model predictors are drawn.

ARI1_REGIONAL_MAX Maximum of 1-yr ARIs that lie within the domain from which model predictors are drawn.

ARI10_REGIONAL_MEDIAN Median of 10-yr ARIs that lie within the domain from which model predictors are drawn.

ARI10_REGIONAL_MIN Minimum of 10-yr ARIs that lie within the domain from which model predictors are drawn.

ARI10_REGIONAL_MAX Maximum of 10-yr ARIs that lie within the domain from which model predictors are drawn.

LAT Latitude of forecast point

LON Longitude of forecast point
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become computationally intractable. Further, having

many highly correlated features can readily result in

model overfitting—making predictions based on noise

affecting an individual native feature rather than the

underlying signal—a phenomenon commonly termed

the ‘‘curse of dimensionality’’ (e.g., Friedman 1997).

There are numerous ways these concerns can be ad-

dressed; broadly speaking, the most common ap-

proaches are either feature selection or feature

extraction. In feature selection, a subset of initial pre-

dictors is chosen that collectively bears the strongest

predictive relationship with the predictand, whereas in

feature extraction, a smaller set of new predictors is

derived from the original set. Both of these procedures

can be performed subjectively throughmanual means or

objectively through automated means. In this case, all of

the input predictors are believed to have a physical re-

lationship with extreme precipitation, and choosing only

the most predictive fields (e.g., model QPF) and dis-

carding the rest risks removing valuable predictive in-

formation not contained in the retained predictor set.

The primary issue with the input predictors in this case is

not that many may not have any physical bearing on the

predictand, but rather that each predictor represents a

value at a different point of a continuous field or a dif-

ferent property at the same point, and all are thus nec-

essarily highly correlated to one another. Furthermore,

while one could conceivably extract features using field

averages or some other predeterminedmethod, this may

not be optimal. For example, it may be better to weight

values closer to the forecast point more heavily, while

still retaining some information from the far-field pre-

dictors. Given the uncertainty in optimally constructing

features by manual means, it is more convenient and

repeatable to instead extract features objectively.

Though it has some limitations (e.g., Shlens 2014),

principal components analysis (PCA; Ross et al. 2008;

Pedregosa et al. 2011) is a robust and frequently utilized

approach for dimensionality reduction. This creates a

small set of uncorrelated predictors that explains the

signal in the forecast data and gives insight into the re-

gional modes of atmospheric variability as depicted in

the GEFS/R model [explored in more depth in Herman

and Schumacher (2018)], while leaving the noise in

lower-order principal components (PCs), acting in

principle to both alleviate overfitting and manage com-

putational requirements.

d. Machine learning algorithms and sensitivity
experiments

The primary statistical algorithm used in this study is

random forests (Breiman 2001). RFs are in essence an

ensemble of decision trees, where traditionally each tree

individually makes a deterministic prediction about the

outcome of the predictand; the relative frequencies of

each possible predictand outcome in the ensemble of

trees are then used to make a probabilistic forecast.

Much further detail on tree and RF construction and

mechanics can be found in appendix A, as well as in

McGovern et al. (2017) and other sources. There are

also several parameters that can be tuned to the par-

ticular forecast problem in order to maximize model

performance. Fourfold cross validation is used formodel

development in this study, whereby each model config-

uration examined is trained four times—once each on

three-quarters of the training data—and then evaluated

on the final withheld quarter. To avoid issues of sample

independence and approximately mimic information

that would be available in an operational context, 974

consecutive initializations are used for each quarter of

training data. All parameter settings and sensitivity ex-

periments are evaluated in this framework. The set of

RF parameters tuned is described in appendix A, and

the results are presented in appendix B.

In this study, there are a great number of dynamical

model data considered as input information on which

the RF can base a prediction. A suite of sensitivity ex-

periments are conducted, as summarized in Table 3, in

order to investigate which aspects of forecast in-

formation contribute most to forecast skill. Experiments

include exploring the following:

d Sensitivity to the inclusion of horizontal variations in

atmospheric fields by varying the previously described

predictor radius parameter R from 0 to 4.
d Sensitivity to the inclusion of additional upper-air

atmospheric fields by comparing the inclusion and

exclusion of two sets of fields, as noted explicitly in

Table 1. The first incorporates temperature, specific

humidity, zonal and meridional winds at 850 and

500 hPa, and 850-hPa vertical velocity in the so-called

Upper-Air Core predictor group, while an additional

experiment further includes those same fields at 700

and 250 hPa.
d Sensitivity of predictor temporal resolution. Predictor

density is 3-hourly for day 2 guidance and 6-hourly for

day 3 guidance; models are additionally trained with

predictors at 12-hourly temporal density for both lead

times and 6-hourly temporal density for the day 2

forecast model and compared against the control

versions.
d Sensitivity to the type and the extent of use of

ensemble information, a question that has implica-

tions for how operational centers allocate their com-

putational resources. Using forecast information from

only the GEFS/R’s control member in model training
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(CTRL) is compared with using the ensemble median

from the full ensemble (MEDIAN) and then further

with the use of the ensemble second-lowest and

second-highest values for each atmospheric field in

conjunction with the median (CNFDB) to evaluate

the impact of this dimension of forecast information.

This follows the findings of Herman and Schumacher

(2016b), who found relatively little sensitivity in

performance with respect to how ensemble informa-

tion is used, but using the near-minimum, median, and

near-maximum values outperformed using the mean

and spread.
d Sensitivity to predictor preprocessing methodology.

Models are trained with and without the aforemen-

tioned PCA preprocessing step, and an assessment of

the effect of this preprocessing step on model skill is

made by comparing the two.
d The effect of region size on forecast skill, hypothesiz-

ing that models trained for larger regions may exhibit

higher skill due to more available training data. This is

performed by aggregating the ROCK and SW regions

into a new WEST one, combining the southern Great

Plains (SGP), northern Great Plains (NGP), and

Midwest (MDWST) regions into a CENTRAL region,

and collecting SE and NE regions into a single EAST

region, while leaving PCST—with its unique extreme

precipitation climatology—untouched.
d Sensitivity of model performance as a function

of model algorithm, specifically by comparing with

logistic regression, a common and comparatively

simpler alternative to statistically deriving forecast

probabilities. Further discussion of LR and other

machine learning alternatives to the RF algorithm is

included in appendix A.

e. Model evaluation

Based on the parameter tuning and sensitivity experi-

ment results, final model configurations are selected. The

final model is run over a completely withheld 4-yr eval-

uation period spanning September 2013–August 2017.

The forecasts generated from the final model are com-

pared with those from the full ensemble of raw GEFS/R

QPFs, as well as the full 50-member ECMWF global

ensemble, accessed from TIGGE (Molteni et al. 1996;

Bougeault et al. 2010). The comparison with the former

provides an assessment of what improvement, if any,

thesemodels yield, comparedwith the raw guidance from

which their forecasts are derived when evaluated in a

real-time setting. The latter, meanwhile, provides an as-

sessment for how these forecasts compare with state-of-

the-science operational ensemble guidance available at

these lead times. To make these comparisons, the QPF
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from each ensemble member of the two ensembles is

regridded onto the ;4.75-km stage IV HRAP grid on

which the Atlas thresholds lie using a first-order conser-

vative scheme (Ramshaw 1985). These regridded QPFs

are then compared with the 1- and 10-yr ARI thresholds

to create deterministic exceedance forecasts with respect

to the two thresholds for each ensemble member. These

binary grids are then upscaled to the GEFS/R grid using

the same procedure as the verification upscaling: any

exceedance in the downscaled grid corresponds to an

exceedance at the nearest GEFS/R point in the upscaled

grid. Since the predictand categories are necessarily mu-

tually exclusive, the 1-yr ARI exceedance grids are

modified so that any member forecasting a 10-yr ARI

exceedance at a point is not forecasting an exceedance of

between 1 and 10 years at that same point and time pe-

riod. The prevailing operational method of generating

forecast probabilities from a dynamical ensemble—

democratic voting, whereby the fraction of ensemble

members forecasting the event is used as the forecast

probability (e.g., Buizza et al. 1999; Eckel 2003)—is ap-

plied to each ensemble to generate the exceedance

probabilities for the reference forecasts.

Skill, both in the final assessment of model perfor-

mance as well as in all aforementioned sensitivity ex-

periments, is quantified bymeans of the rank probability

skill score (RPSS) with a climatological reference:

RPSS5 1:02
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, (1)

with D forecast days; P forecast points; K predictand

categories; Pjpd andOjpd correspond, respectively, to the

forecast probability and observance of predictand cat-

egory j on day d and at point p; and Pclim corresponds to

the climatological frequency of occurrence, as defined

by the respective ARIs of the predictand. A score of 1.0

indicates a perfect forecast, and a score of 0.0 indicates

model performance equivalent to forecasting climatol-

ogy. Final assessment also includes analysis of re-

liability, both subjectively through reliability diagrams

and quantitatively via theMurphy (1973) decomposition

of the Brier score (BS), for category j*:

BS
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where there are N5DP total forecasts, broken into C

discrete probability bins with Nc forecasts being issued

for each bin c; Oj* denotes the climatological (based on

the period of record) frequency of observing event cat-

egory j*, Ocj* denotes the proportion of forecasts in

probability bin c observing event category j*, where j* is

the aggregation of event categories of at least j in the

RPSS framework, and Oj*(12Oj*), the so-called ‘‘un-

certainty’’ term, also represents the BS of a climato-

logical forecast. Converting to a Brier skill score (BSS)

framework by dividing out by this term,
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Reliability

. (3)

This analysis is conducted for both the 1- and 10-yr

thresholds.

Skill calculations and comparisons are made for the

host of sensitivity experiments and for each region, lead

time, and model configuration. For each comparison,

statistical significance is assessed by bootstrapping to

obtain identical sets of cases for each of the two forecast

sets being compared. Skill scores are derived from the

subsample of each forecast set, and a skill difference is

computed. This process is repeated 1000 times to

generate a distribution of skill differences, and statistical

significance is ascertained with respect to whether the

0.5th- and 99.5th-percentile skill score difference values

from the bootstrap trials overlap zero. This 99% confi-

dence bound is used in contrast to 90% or 95% bounds

to compensate for concerns arising from conducting

statistical significance analysis on numerous different

comparisons. While some uncertainty analysis is in-

cluded in the figures presented, much of the statistical

significance difference results discussed in the text are

omitted for the sake of concision.

3. Results: Sensitivity experiments

Examining forecast skill as a function of time step be-

tweenatmospheric field predictors (i.e., theCORE_LTIME

models of Table 3; Fig. 4a) yields two striking findings

concerning 1) the large variations in forecast skill

across regions and 2) the evidently low sensitivity of

forecast skill to time step length within any given region.
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For the 3-h time step, predictors are gathered from a

total of nine forecast times; with the 6-h step, five fore-

cast times are used, and with the 12-h time step, a total of

three forecast times are used. The 12-h time step

therefore has one-third of the total predictors as the

model with the 3-h time step, but still yields nearly

identical forecast skill results. In most regions and

forecast periods, there is a slight degradation in perfor-

mance going from the 6- to 12-h time step, but the dif-

ference is not generally statistically significant by a 99%

bootstrap skill score difference test (not shown). The

one exception to this is in the PCST region, which has

much higher skill overall than the other regions for both

forecast periods and exhibits somewhat higher sensi-

tivity to the predictor time step than the other regions,

particularly in going from 6 to 12 h, with RPSS differ-

ences of approximately 6%.

Similar to the temporal resolution findings, there is a

general lack of sensitivity as a function of predictor

spatial extent (Fig. 4b). This finding comes in stark

contrast to that of Herman and Schumacher (2016b),

who found great sensitivity of predictor spatial extent

in forecasting airport flight rule conditions. Albeit

weak, a slight improvement in skill for most forecast

period–region combinations can be noted with in-

creasing predictor radius, often to the extent that the

skill difference between 0 and 4 gridbox radii is statis-

tically significant (not shown). Two regions in particu-

lar, the NE and PCST, exhibit by far the most

sensitivity to predictor spatial extent, with differences

of roughly 0.02 observed over the evaluated interval.

Also of note is that a radius of 4 grid boxes—the highest

number evaluated—did not always yield the best per-

formance results; most notably, the day 2 model for the

NE region maximized skill at a radius of 2, with a slight

deterioration of forecast skill with increasing radius

thereafter. In those regions where the GEFS/R cannot

explicitly resolve the processes responsible for pro-

ducing extreme precipitation, the RF is ultimately

making forecasts more on environmental factors; these

do not vary drastically in time or space, and thus a

single number or small set of numbers at or immedi-

ately surrounding the forecast point is sufficient to

characterize the basic properties of the environment.

This is all that the RF is really using for much of its

predictions [see Herman and Schumacher (2018) for

more detail]. However, in regions impacted more

readily by larger-scale systems where the dynamical

model can more directly simulate the precipitation

processes, such as PCST and the NE, the spatial vari-

ations in atmospheric fields carry more signal rather

than noise and thus contribute more predictive value.

Like varying spatial and temporal density, there is

relatively little sensitivity to the inclusion of more at-

mospheric fields (Fig. 5a). Slight but consistent im-

provement is observed in adding the core upper-air

fields as predictors, but adding further levels beyond the

core group was found to not improve predictive skill

and actually resulted in a decrease in skill for the PCST,

NE, ROCK, and SE regions—those that are most af-

fected by larger-scale precipitation systems. Though still

rather small, somewhat more distinct sensitivity to type

of ensemble information included (Fig. 5b) can be seen

here across all regions, with improvements seen using

predictor information from the GEFS/R ensemble

median versus using only the control member, and slight

FIG. 4. Sensitivity experiment RPSS results for (a) the

CORE_LTIME models, as a function of the time step between

incorporation of new atmospheric field forecast values, and

(b) the CORE_LSPACE models, as a function of the radius of

predictor information incorporated, each including both day 2

and day 3 versions of the model and for each region studied.

Lines correspond to a particular day–region pair as indi-

cated in the respective panel legends. Error bars in both

panels correspond to 90% confidence bounds obtained by

bootstrapping.
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further improvement using the ensemble second-from-

minimum and second-from-maximum in addition to the

ensemble median. The largest differences in magnitude

are again for the PCST region, but in this experiment,

clear and statistically significant (not shown) improve-

ments are also seen for low-skill, convectively active

regions such as MDWST.

Aggregating regions (Fig. 5c) results in a slight deg-

radation in forecast skill. In principle, it is possible for a

decision tree to automatically forecast for specific re-

gions by splitting first on the latitude and longitude

predictors, and then further partitioning based on

meteorological variables thereafter. However, these

findings demonstrate that there is some—albeit lim-

ited—utility in manually partitioning training data with

distinct hydrometeorological relationships, rather than

relying on the machine learning algorithm to discern the

distinction automatically. Comparing the impact of ap-

plying PCA preprocessing to the RF (Fig. 5d, leftmost

two columns) shows that performing PCA tends to ei-

ther improve performance, as is the case for the PCST,

NE, SW, andMDWST regions, or make little difference,

as seen in the ROCK, NGP, SGP, and SE regions. The

positive differences tend to be larger in magnitude, both

in relative and absolute senses, for day 2 model versions,

compared with day 3. Forecasts produced through LR

FIG. 5. Sensitivity experiment RPSS results. (a) A function of the atmospheric fields included as input to the RF

algorithm for day 3 forecast and broken out by region. From left to right, the columns correspond to results using

just the Core atmospheric field group, both the Core and Upper-Air Core groups, and the Core, Upper-Air Core,

and Upper-Air Extra groups. For more information on which fields are included in each predictor group, consult

Table 1. (b) A function of the type of GEFS/R information used as input predictors to the RF algorithm for day 3

forecasts and broken out by region. From left to right, the columns correspond to results using just the forecast fields

from the GEFS/R control member, the ensemble median forecast values from the full ensemble, and the ensemble

median, second-from-minimum, and second-from-maximum forecast values from the full ensemble. (c) A function

of region aggregation, with the left column using the eight regions depicted in Fig. 3 and the right column using

training data that aggregates data from seven of the eight original regions into three regions, as described in the text.

(d) A function of model algorithm for different forecast days and regions as indicated in the figure legend. From left

to right, columns correspond to results of the CTL_NPCA model, CTL_PCA model, CTL_LR model, and

a weighted combination of models as described in the text. For all panels, error bars correspond to 90% confidence

bounds obtained by bootstrapping.
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tend to be substantially worse than those generated by

RFs (Fig. 5d, center columns). However, the exact

magnitude to which this is the case varies by region;

substantial differences in skill are seen between RF and

LR forecasts for the SW, ROCK, and SGP regions,

while there is almost no skill difference between the day

3 forecasts in the PCST region. This may suggest the

linear assumptions inherent to the LR algorithm per-

form better in larger-scale systems than in the more

convectively active ones in which the responsible pro-

cesses are highly nonlinear, but this causality is not en-

tirely clear. Finally, a weighted average of RF and LR

forecasts outperforms its component members for all

regions and forecast periods. The extent of over-

performance is strongly tied to the skill difference be-

tween the RF and LR models; when the skill difference

is small, the value of the weighted average is compara-

tively large to when the RF performs much better

than LR (cf. Fig. 5d, PCST and SW lines). Since these

weighted averages performed the best in cross validation, a

weighted average using each of the CTL_NPCA,

CTL_PCA, and CTL_LR models was chosen for the

final model configuration.

4. Results: Final model performance

For both the final ML models and the forecasts from

the raw QPFs of both the GEFS/R and ECMWF

(Fig. 6), a usually statistically significant deterioration in

forecast skill from day 2 to day 3 is evident in each

CONUS region over the 4-yr test period. Forecast skill is

significantly higher in regions with extreme precipitation

associated partially or primarily with synoptic-scale

precipitation episodes, such as PCST, SW, and ROCK,

rather than smaller-scale convective systems that char-

acterize extreme precipitation, as in the NGP, SGP, and

MDWST regions. At an extreme, the NGP and SGP

GEFS/R raw QPFs exhibit no skill in predicting ARI

exceedances at these lead times. Especially for the ML

models, the bigger day 2 versus day 3 skill differences are

also seen where the skill is higher, again suggesting the

direct forecasting of the precipitation as opposed to

forecasts more reflecting the forecast environment, ei-

ther dynamically via parameterized convection in the

case of rawQPFs or directly in the case of theMLmodel

forecasts. Furthermore, the ML models exhibit a larger

skill deterioration between days 2 and 3 than either of

the raw ensemble forecast sets.

Comparing the forecast systems, the ECMWF fore-

casts consistently and statistically significantly out-

perform the GEFS/R forecasts at all lead times, except in

the SE region (Fig. 6). Encouragingly, the ML model

forecasts are statistically significantly more skillful for all

eight regions and both lead times, compared with the

GEFS/R forecasts from which they are based. The post-

processing is thus clearly accomplishing its purpose of

improving forecast skill. But it is also apparent that the

GEFS/R is not a state-of-the-science model for extreme

QPF prediction, given its lower skill compared with the

ECMWF. The real test of the ML model then is how it

compares with current best operational guidance for

these lead times, represented here with the ECMWF

ensemble. The comparison (Fig. 6) is generally quite fa-

vorable, with the day 3ML forecasts outperforming even

the day 2 ECMWF forecasts across all regions, except

ROCK and PCST. In the nonwestern regions, the extent

of overperformance is quite considerable when compar-

ing equal lead times, with skill score improvements of

factors of 2 to 3 seen in many comparisons. In the ROCK

and PCST regions, the ML and ECMWF forecasts per-

formed about equally at day 2, and ECMWF performed

slightly better at day 3. Overall, the ML models demon-

strated the ability to consistently outperform current

operational model guidance, especially in convectively

active regionswhere there is no operational guidance that

can dynamically resolve the physical processes producing

extreme precipitation at these lead times.

Reliability diagrams of day 2 raw GEFS/R and

ECMWF forecasts (Fig. 7) reveal highly overconfident

probabilistic exceedance forecasts for all regions, both

severity levels, and both ensembles, as evidenced by the

shallow slope relative to the one-to-one line in each

panel. The raw GEFS/R forecasts (Figs. 7a,b) are rela-

tively sharp, with more than 0.01% of forecasts falling

FIG. 6. Final RPSS results obtained over the 4-yr test period

spanning September 2013–August 2017, broken out by region. Red

bars correspond to the results of the final forecast models trained in

this study, while gray bars depict results from the rawGEFS/RQPF

probabilities derived from the full ensemble. Dark bars illustrate

day 2 performance results, while lighter colors show results for day 3.

Error bars correspond to 90% confidence bounds obtained by

bootstrapping.
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into each probability bin above 10% and a vast majority

of zero probability forecasts (not shown). For all re-

gions, there are cases where every ensemble member has

simultaneously predicted a 1-yr exceedance (Fig. 7a), but

the same is not true for 10-yr exceedance predictions in the

northeastern regions: NE, NGP, andMDWST (Fig. 7b).

The ECMWF (Figs. 7b,d) is also overconfident, but we

see that it is also negatively biased for all cases. Its de-

gree of overconfidence is dampened, compared with the

GEFS/R, and it is not as sharp, with fewer occurrences

of very high forecast probabilities, except in the west-

ernmost regions of ROCK and PCST (Fig. 7b, inset

panels). With 50 members rather than 11, there is also

substantially more resolution across the probability

spectrum in the ECMWF forecasts. By the very nature

of how these forecasts are generated, quite a bit of

sharpness is inherent at the cost of reliability, since it is

not possible for probabilities near the climatological

event frequency to be issued for either raw ensemble,

but particularly for the GEFS/R.

The day 2 reliability diagrams for 1-yr exceedance

forecasts from the different components of the final

model—CTL_NPCA, CTL_PCA, and CTL_LR—are

shown in Fig. 8. The CTL_NPCA (Fig. 8a) shows

markedly different characteristics than either of the raw

ensembles. In particular, all of the regions exhibit an

underconfidence signal, with low probability events be-

low about 2% for 1-yr events (Fig. 8a) occurring with

observed relative frequencies below the forecast prob-

abilities. The relative event frequencies are conversely

appreciably higher than the forecast probabilities would

indicate for probabilities above 5%. Among the regions,

FIG. 7. Reliability diagrams for day 2 forecasts generated from raw QPFs of the full GEFS/R and ECMWF

ensembles. Colored opaque lines with circular points indicate observed relative frequency as a function of forecast

probability; the dashed black line is the one-to-one line, indicating perfect reliability. Colors correspond to the

performance of the forecasts over different regions, as indicated in the legend in the lower-right of each panel. Inset

panels indicate the total proportion of forecasts falling in each forecast probability bin, using the logarithmic scale

on the left-hand side of each panel; lines are again colored by region in accordance with the legend. The 1-yr

exceedance forecast from (a) GEFS/R and (b) ECMWF and the 10-yr exceedance forecast from (c) GEFS/R and

(d) ECMWF.All axes are logarithmic as labeled. Colored dotted lines indicate the climatological event probability

for each region for the ARI level of the corresponding panel, while the dash–dotted lines indicate no skill lines for

the color-corresponding region. The curves continue off the left end of each panel toward the ORF of forecasts in

the zero forecast probability bin.
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the PCST probabilities are the most negatively biased,

while NE probabilities are the most positively biased.

Overall, reliability is much better than for either raw

ensemble, but this comes at the expense of sharpness.

Fewer than 1 in 10 000 forecasts are above about 20%

(Fig. 8a, inset panels), and maximum probabilities are in

the 30%–80% range, depending on the lead time and

region, compared with 100% for all lead times and re-

gions in the raw ensembles. The CTL_PCA model

(Fig. 8b) exhibits very similar reliability characteristics

to the CTL_NPCA model, including the under-

confidence, reduced sharpness compared with the raw

ensembles, and different regional probability bias

characteristics. It tends to be more negatively biased

than CTL_NPCA at low and high probabilities (cf.

Figs. 8a,b), correctly so at high probabilities and un-

desirably so at low ones. The CTL_LR model (Fig. 8c)

exhibits some similarities and some differences with the

RF-based models. PCST forecasts are consistently the

most negatively biased, followed by ROCK and the SE,

with NE region forecasts being the least negatively bi-

ased. However, unlike the RF-based forecasts, the LR

model issues a larger number of high probabilities; for

example, forecasts in the highest probability bin were

issued for most regions (Fig. 8c). At the highest proba-

bilities, the forecasts revert to being positively biased, as

they are for events with probabilities issued in the

0.01%–1% range. At very low probabilities, LR-based

forecasts are substantially more negatively biased than

for RF-based forecasts, leading to considerable over-

confidence overall when considering that the vast ma-

jority of forecasts issued occur on this low-probability

end of the spectrum. While LR (and regression in gen-

eral) is effective at removing bias in a global sense,

since a single regression equation must necessarily

apply globally to all forecasts, it inherently cannot per-

form more localized, context-dependent forms of bias

correction, leading to forecast probability-dependent

model biases.

The final ML model reliability (Fig. 9) unsurprisingly

reflects a blend of the component members, retaining

some of the underconfidence of the RF-based models

while adding a bit of sharpness from the CTL_LRmodel

in regions where it verified skillfully enough in cross

validation (e.g., PCST; Fig. 5d) to garner much weight.

The probability distribution for 1-yr exceedance events
FIG. 8. Reliability diagrams for day 2 forecasts of 1-yr ARI exceed-

ances for different statistical algorithms. Panel characteristics as in Fig. 7,

but note that axes have been modified to include more of the low-

probability tail due to increased resolution in the plotted forecast sets.

Forecasts from the (a) CTL_NPCA model, (b) CTL_PCA model, and

(c) CTL_LRmodel. Bin right edges correspond to forecast probabilities

of 0, 13 10210, 13 1027, 13 1024, 13 1023, 0.01, 0.02, 0.03, 0.04, 0.05,

0.07, 0.09, 0.11, 0.14, 0.17, 0.21, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.60,

 
0.675, 0.75, 0.85, and 1.0, except that the first five probability bins have

been aggregated into a single frequency-weighted probability bin for

plotting on the figure.
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is not markedly different between the day 2 and day 3

forecasts (cf. Figs. 9a,c), but the relatively higher prob-

abilities issued for 10-yr exceedances on day 2 do not

occur at the day 3 lead times (cf. Figs. 9b,d). This is

consistent with increasing confidence in very extreme

events with decreasing lead time—something seen very

pronounced in the final model, but to a much lesser

extent in the raw ensemble forecasts.

The relationship between the reliability analysis and

skill via the Brier score decomposition (Murphy 1973)

quantitatively solidifies many of the general observa-

tions discerned by inspection of the reliability diagrams.

Though sharper than competing forecasts, the raw

GEFS/R forecasts consistently exhibit the worst reso-

lution component contribution to forecast skill for all

regions and severity levels, both for day 2 forecasts

(Figs. 10a,c) and day 3 forecasts (Figs. 11a,c) due to an

inability to actually distinguish events from nonevents

by resolving the responsible physical mechanisms. The

final ML models exhibit better resolution term skill

contributions than the ECMWF ensemble forecasts,

with the exception of the ROCK and NGP regions for

1-yr events (Figs. 10a, 11a). Between the component

models, resolution term skill tended to best for

CTL_NPCA forecasts over the test period, particularly

at the 10-yr severity level (e.g., Fig. 10c), but the extent

of the difference tended to be relatively small, and there

were numerous instances where PCA-based models

exhibited more resolution. The weighted average con-

sistently exhibited higher resolution than any of the

component members. With respect to the reliability

contribution to skill (Figs. 10b,d for day 2; Figs. 11b,d for

day 3), ECMWF forecasts were—perhaps surprisingly,

given the lack of explicit calibration—the most reliable

forecast set for all regions and lead times, while in many

cases, the ML models had a more negative contribution

to the total skill than the raw GEFS/R, likely resulting

from the underconfidence. The resolution term is, at

largest, 1 and at least 0 in this decomposition, while the

reliability term is, at most, 0. The magnitude of the

resolution terms is consistently several factors larger

than the reliability term for all forecast sets, and the

differences in that term generally have a larger absolute

impact on the overall Brier skill scores.

While by no means a comprehensive characterization

of the system, a sample of real cases over the test period

FIG. 9. Reliability diagrams for the final forecast model, with panel attributes as in Fig. 8. Day 2 forecast results for

(a) 1- and (b) 10-yr ARI exceedance forecasts and day 3 (c) 1- and (d) 10-yr ARI exceedance forecasts.

1586 MONTHLY WEATHER REV IEW VOLUME 146



is presented to illustrate some of the strengths and

weaknesses of the system. On the evening of 19May and

the morning of 20 May 2015, a vigorous mesoscale

convective system developed over southern Oklahoma

and northern Texas, producing very heavy rainfall that

contributed to historic flooding in the region duringMay

2015 (e.g., Wolter et al. 2016). Stage IV analysis

(Fig. 12a) reveals that the 24-h precipitation totals ex-

ceeded 1-yr ARI thresholds within much of an E–W

band encompassing the region, with embedded areas of

10-yr exceedances along the state border region

(Fig. 12b). While the ECMWF ensemble forecasts in-

dicate some possibility of extreme precipitation in that

region during this time frame at day 3 (Fig. 12d), the

probabilities are displaced too far to the south and west,

and the probabilities of 10-yr exceedances are very low.

There is some improvement in positioning with the day 2

forecast (Fig. 12c), but it remains too far west and with

probabilities still quite low, particularly at the 10-yr ARI

level. Raw GEFS/R forecasts at day 3 (Fig. 12f) indicate

quite high risk for a 1-yr exceedance over a fairly narrow

area, better positioned than the ECMWF ensemble at

the same lead time but still too far to the west. Outside of

this area, the GEFS/R indicates almost no risk of an

extreme rainfall event and also indicates no risk of a

10-yr exceedance anywhere in the domain. The day 2

forecast (Fig. 12e) looks similar to the day 3 outlook,

except that the probabilities are reduced somewhat in

the target area, which also has incorrectly displaced

farther to the south and west. The ML model depicts a

much different picture. It exudes much less confidence,

with lower maximum probabilities, compared with ei-

ther raw ensemble, but nonzero exceedance probabili-

ties of both 1- and 10-yr exceedances across much of the

domain for both days 3 (Fig. 12h) and 2 (Fig. 12g). Im-

portantly, the model elevated probabilities compared

with the raw guidance in the place that extreme pre-

cipitation was actually observed (to the east of where it

was forecast in the GEFS/R). In fact, at day 2 (Fig. 12g),

the probability maximum is located right where the

heaviest precipitation actually occurred, displaced well

to the north and east of where it was forecast in the

FIG. 10. Modified Murphy (1973) decomposition results, following Eq. (3) in text. (a) Equation (3) resolution

term for all models and regions for day 2 forecasts at the 1-yr severity level and (b) the reliability term results for the

same forecasts and severity level. (c),(d) As in (a),(b), but for 10-yr ARI exceedance forecasts. Numeric values

indicate the value of the corresponding termof the table, as indicated by themodel label (row) and region (column).
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GEFS/R (Fig. 12e). Additionally, while still low, the

10-yr event probabilities are much higher over the ver-

ifying area when compared with either raw ensemble,

with maximum day 2 probabilities of around 30% and

3% for 1- and 10-yr exceedances, respectively. Finally,

in contrast to the raw guidance, the ML model became

increasingly confident in an event occurring with de-

creasing lead time (cf. Figs. 12g,h).

A different mesoscale precipitation produced ex-

treme precipitation over southwestern Wisconsin,

southeastern Minnesota, and northeastern Iowa during

the evening and overnight hours of 21 and 22 September

2016, respectively. Based on ST4 QPE (Fig. 13a), much

of the area experienced 1-yr ARI exceedances for the

24-h period ending 1200 UTC 22 September 2016, and

within the 1-yr exceedance area, there were many em-

bedded cells that produced 10-yr ARI exceedances

(Fig. 13b). ECMWF forecasts at day 3 indicated risk of

extreme rainfall, even at the 10-yr severity level

(Fig. 13d), but the location was poor, with exceedance

probabilities high in eastern Minnesota and northern

Wisconsin where extreme rainfall was not observed,

and very low probabilities in northeastern Iowa and

southeastern Wisconsin where it was. Both the posi-

tioning and risk of very extreme precipitation improved

for the day 2 forecast issuance (Fig. 13c), but probabil-

ities still remained too far to the north. The GEFS/R at

day 3 (Fig. 13f) indicated very little risk of extreme

precipitation in the area, with just one member correctly

predicting a 1-yr exceedance in southeasternMinnesota.

The risk of an event occurring within the domain

increased for the day 2 issuance, but the locations

got worse, with maximum risk indicated in eastern

Nebraska, western Iowa, and northeastern Wisconsin and

the only 10-yr prediction occurring in the latter location.

Somewhat like the raw GEFS/R, the ML model had only

some indication of extreme precipitation risk at day 3

(Fig. 13h). However, it both had the higher probabilities

(near 10% in both cases) distributed over a much larger

area and indicated some risk of a 10-yr event, with prob-

ability maxima near 1.5%. Additionally, it had the maxi-

mum probability axis nearly collocated with where

heaviest precipitation occurred: well to the south of the

ECMWF probabilities, albeit still slightly too far to the

north. The day 2 forecast issuance (Fig. 13g) was largely

similar. The two main changes are a correctly increased

FIG. 11. As in Fig. 10, but for day 3 forecasts.

1588 MONTHLY WEATHER REV IEW VOLUME 146



FIG. 12. Case study depicting forecasts from the finalMLmodel and both reference ensembles for the 24-h

period ending 1200 UTC 20 May 2015. (a) 24-h stage IV QPE ending at 1200 UTC 20 May 2015 and

(b) corresponding ARI exceedances of 1- and 10-yr thresholds. (c) ECMWF ensemble neighborhood ARI

exceedance probabilities in the filled (1 yr) and unfilled (10 yr) contours for the 36–60-h forecast initialized

0000 UTC 18 May 2015 and (d) for the 60–84 h-forecast initialized 0000 UTC 17 May 2015. (e),(f) As in

(c),(d), but for forecasts from the raw GEFS/R QPFs. (g),(h) As in (c),(d), but for 36–60- and 60–84-h

forecasts, except for from the final version of the ML model trained in this study. Contours for 10-yr events

are 0.005, 0.01, 0.03, 0.05, 0.075, 0.10, 0.125, 0.15, 0.175, 0.20, 0.25, 0.3, 0.4, 0.5, 0.6, 0.8, and 1.0.
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risk in the area where the event actually verified and an

incorrectly increased risk of heavy precipitation in

eastern Nebraska, where the raw GEFS/R had heavy

precipitation on day 2 (Fig. 13e).

5. Discussion and conclusions

An ML model based on RFs and LR is used to gen-

erate CONUS-wide probabilistic forecasts for the

exceedance of 1- and 10-yr ARI thresholds for 24-h

precipitation accumulations during the day 2 and day 3

periods. Approximately 11 years of GEFS/R forecasts,

in particular the ensemble median, are used to train

these models, and forecasts are made using numerous

simulated atmospheric fields (Table 1) varying in both

space and time, in addition to a variety of geographic

and climatological forecast predictors (Table 2). Sep-

arate models are trained for each of the two 24-h pe-

riods and for each of eight different regions of the

CONUS, as depicted in Fig. 3. A variety of sensitivity

experiments are performed, as outlined in Table 3, to

ascertain the utility of different aspects of forecast in-

formation in predicting locally extreme precipitation.

Finally, the final forecast models were evaluated and

compared with forecasts based only on the ensemble of

raw QPFs from the GEFS/R and ECMWF. The ML

models trained in this study demonstrably out-

performed the raw GEFS/R forecasts for all regions

and forecast lead times (Fig. 6), often more than dou-

bling the forecast skill and adding substantially more

than 24-h lead time improvement in forecast skill. With

the exception of the PCST and ROCK regions, the

same held for comparison of the ML model forecasts

with ECMWF ensemble forecasts as well. Both raw

ensembles tended to be negatively biased and highly

overconfident in predicting extreme QPFs (Fig. 7),

particularly at the 10-yr ARI for central CONUS re-

gions; this was reversed in the finalMLmodel forecasts,

which were more reliable at higher probabilities but

generally underconfident (Fig. 9).

In general, unlike past studies (e.g., Herman and

Schumacher 2016b), in most regions, the temporal reso-

lution and extent of spatially displaced predictors from

the forecast point considered had little to no impact on

forecast skill (Fig. 4), in addition to the use of upper-level

information and additional ensemble information

(Fig. 5). These results are suggestive of two findings. First,

most of the relevant information about predictors dis-

placed spatiotemporally from the forecast point, other

atmospheric fields, or other ensemble member in-

formation can be derived with at least moderate accuracy

using just the information from the ensemble median

from a core set of fields collocated and concurrent with

the forecast point and time. Thus, these additional pre-

dictors contain only limited independent forecast in-

formation, at least for this coarse dynamical model and

this underdispersive ensemble configuration. It also sug-

gests that for the most part, the predictive ability is

coming primarily through a characterization of the

overall environment, which can be reasonably summa-

rized with only a subset of predictors, rather than the

simulated spatiotemporal variability and full 3D charac-

terization of the atmospheric evolution in the underlying

dynamical model. This finding comes in contrast to sim-

ilar studies of other forecast problems using the GEFS/R,

such as the Herman and Schumacher (2016b) study that

investigated the use of the GEFS/R to create ML-based

probabilistic forecasts of cloud ceiling and visibility at

different airports and found considerable value in the

inclusion of spatially displaced predictors. However,

there is at least one major exception: none of this really

held for the PCST region. Here, more complex models

with more predictors notably improved forecast skill.

This is perhaps in part because the physical processes

associated with extreme precipitation are much better

resolved in theGEFS/R in this region, compared with the

others, and so the added information adds usable forecast

utility beyond simply duplicatively characterizing the at-

mospheric environment for the forecast. The largest skill

difference of the sensitivity experiments came for most

regions in changing algorithmic assumptions and pro-

cesses (Fig. 5d); the simpler linear assumptions of LR

tended to degrade forecast skill, compared with the more

limited assumptions underlying the RF models.

The results of this study reveal that the application of

more sophisticated statistical methods and ML algo-

rithms such as RFs can demonstrably improve forecasts

of extreme precipitation and potentially other rare,

high-impact weather events in the medium range when

compared with the methods and techniques that are

most prevalent in forecast operations today. One unique

aspect here is the scope of this model; while most past

studies that employed these techniques for numerical

weather prediction have focused on a small domain or

just a sampling of points, the models trained here dem-

onstrate an ability to generate skillful, reliable forecasts

year-round for all of the CONUS and a range of lead

times. There are many forecast problems that remain to

be explored, but the results of this study and others

strongly suggest that further development and applica-

tion of these data-intensive statistical techniques could

substantially improve our forecasts over the current

state of the art, even compared with using more so-

phisticated dynamical models. To that end, imple-

mentation of this methodology for operational use to

assist Weather Prediction Center forecasters with the
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FIG. 13. As in Fig. 12, but for the 24-h period ending 1200 UTC 22 Sep 2016.
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development of their excessive rainfall outlooks is cur-

rently underway.

This forecast technique presents some advantages

over purely dynamical approaches, as dynamical

models are inherently limited by two factors by which

these statistical techniques are not. First, dynamical

models require ever-increasing computational re-

sources for increasing model resolution; constraints

on computing power prevent sufficient resolution to

directly resolve many small-scale processes, many of

which are observed in the highest-impact weather

phenomena. Second, dynamical models are limited

by our physical understanding of the processes we are

attempting to simulate or forecast. Machine learning

algorithms, in contrast, can detect predictive patterns

in the available information even in places where we

do not know or understand the physical connection

between the information and the phenomenon that

we wish to predict. While they are also limited in

complexity by computational and data resources, the

strict limits on resolvability are not there: physical

resolution can often be gained through postprocess-

ing of larger-scale information. There is thus ample

reason to believe that further investigation of these

techniques for NWP is a worthwhile venture, and

eventual implementation into forecast operations

could help forecasters with their tasks by skillfully

synthesizing many different sources of forecast in-

formation to help alleviate their often time-pressed

schedules. This in turn can aid end-user preparedness

and, in the case of high-impact events, hopefully help

to protect lives and property.

One of the main advantages of the methods explored

in this study compared with other popular machine

learning methods, in addition to their computational

tractability, is the ability to visualize their output and

gain insights into detecting and quantifying specific

biases in the underlying GEFS/R model and physical

insights into the most valuable forecast information for

predicting locally extreme precipitation. For focus and

brevity, the diagnostics that shed light on these in-

sights have been omitted from this manuscript and

are presented instead in a companion paper focused

on the diagnostics (Herman and Schumacher 2018)

rather than the forecasts and forecast process ex-

plored in depth here.

Some limitations of this work are worthy of note.

Stage IV precipitation is used as truth for this study;

though there is not a clearly better verification source

available, it does have its drawbacks. It does have some

spurious quality control issues and often struggles in

areas of complex terrain due to radar beam blockage,

interference, and limited gauge coverage (Herman and

Schumacher 2016a; Nelson et al. 2016). Since the model

is trained to forecast stage IVQPE exceedances, this can

lead to some idiosyncrasies and other anomalies asso-

ciated with the biases observed in the stage IV product.

One such anomaly is the persistent presence of very

small areas of exceedances in some regions of complex

terrain during times of favorable convective conditions.

This can be removed by quality control procedures to

some extent, but some artifacts do remain. This happens

most prominently in the terrain of western NewMexico;

a small region there has many more instances of ARI

exceedances over both the training and test periods than

any other part of the CONUS. The ML-based models

recognize this and, for the SW region, consistently issue

much higher probabilities in this region. In one sense,

this is correct—it is correctly predicting what it was

trained to predict—but is still undesirable behavior due

to a disparity between ‘‘truth’’ in the study and the true

extreme rainfall risk. Solutions to this issue and related

issues in other parts of the country must be explored in

order to maximize operational utility. Additionally,

while the choice of using the ARI framework was an

intentional decision and provides numerous benefits,

it is not an end-all for predicting heavy precipitation

impacts. While ARIs often have better correspondence

with impacts than a fixed threshold, there are still re-

gional discrepancies in which ARIs have optimal asso-

ciation with impacts, and the framework employed here

does not account for antecedent conditions, which

can be critical for assessing flash flood risk. More in-

vestigation into the relationship between QPE exceed-

ances and rainfall impacts should be performed to

maximize the practical significance of the model

predictand.

Additionally, the predictors for this study come from a

very coarse and otherwise rather antiquated global

model. The GEFS/R was used for this study because

unlike almost any other dynamical model, it has been

nearly static for a very long period of record and

has nearly stationary bias characteristics—an essential

property for performing this kind of analysis. However,

the models trained herein are not working off of the

‘‘state of the art’’ of flash flood predictors. The longer-

range day 2 and day 3 lead times were chosen for this

study in part because the discrepancy between GEFS/R

forecast quality and state of the art is smaller at these

longer lead times due to less convection-allowing guid-

ance being available and higher-resolution models

degrading in utility with increasing forecast lead time

(e.g., Zhang et al. 2003, 2007).

There are also some complications that must be

considered for real-time implementation. As one ex-

ample, the regional models are trained completely
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independently of one another, with different training

data and different solutions. Consequently, they can

occasionally give rather different predictions on nearly

identical inputs, resulting in undesirable probability

discontinuities across region boundaries. Appropriate

methods for removing probability discontinuities in

space must be further explored.

Future workwill seek to alleviate these limitations in a

variety of ways. Exploration of using different pre-

dictands, likely combining hydrometeorological in-

formation from a variety of sources, will be made for

more explicit flash flood prediction. This may involve a

regionally varying predictand definition, with someARI

thresholds better corresponding to flash flood impacts in

some regions compared with others. Additionally,

although a large number of predictors were explored in

this study, there are many additional choices for pre-

dictors that could ostensibly further improve forecast

skill. While atmospheric fields are represented here in

absolute terms, it may be beneficial to instead represent

some fields relative to the local climatology of the

forecast point in terms of standardized anomalies. This

is particularly true for fields like PWAT, where stan-

dardized anomalies have often shown better corre-

spondence with precipitation impacts across varied

regions than absolute values (e.g., Junker et al. 2009;

Graham and Grumm 2010; Nielsen et al. 2015). More

exploration of derived fields of physical relevance to

extreme precipitation processes should also be explored.

Some possible examples include upslope flow to gauge

forcing for ascent by the horizontal wind, column mean

wind to ascertain potential for slow-moving storms, and

deep-layer shear as a metric for supercell potential.

This study also focused on a rather specific time in-

terval and took all dynamical predictors from a single,

somewhat antiquated ensemble system. Future ex-

pansion both to the 12–36-h day 1 period and beyond

the day 3 period will be explored, including predictors

from more contemporary CAM guidance and poten-

tially including observations as well for the shorter

lead time forecasts. Operational models also tend to

undergo periodic upgrades and thus do not remain

static like the ensemble system used here. The sensi-

tivity of ML model performance to changes in dy-

namical model bias characteristics that result from

these upgrades is a question of considerable opera-

tional relevance and an additional factor worthy of

future investigation. It was also seen that the ML models

suffered to varying degrees from underconfidence and, in

some instances, negative bias. Methods of probability

calibration of the ML model probabilities as a final post-

processing step (e.g., Hagedorn et al. 2008; Hamill et al.

2008; Bentzien and Friederichs 2012; Herman and

Schumacher 2016b) should be explored in future work

and parameter choices reconsidered in light of this addi-

tional calibration. Finally, this study only explored a

subset of available machine learning algorithms. Other

choices, including adaptive learning algorithms, may

be able to better exploit predictor–predictand re-

lationships, appropriately update to reflect changes in

an underlying dynamical model, and produce superior

forecasts for the locally extreme precipitation and

flash flood forecast problem (e.g., Liu et al. 2001;

Roebber 2015; Pelosi et al. 2017).
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APPENDIX A

Algorithm Descriptions

a. Random forests

As noted in themain text, RFs are simply an ensemble

of decision trees. Decision trees consist of a network of

two types of nodes: decision nodes and leaf nodes. De-

cision nodes each have exactly two children, which may

be either decision nodes or leaf nodes, with a binary split

based on the numeric value of a single input predictor

determining whether to traverse to the left or right child.

A leaf node has no children and instead makes a cate-

gorical prediction of the outcome of the input example

based on the leaf’s relationship to its ancestor nodes.

For a given forecast, one begins at a decision tree’s root,

traversing through its children based on the relative

value of the forecast’s predictors to each decision node’s

threshold critical value for the predictor associated with

the node. This process is repeated until a leaf node is

reached; its value corresponding to the leaf becomes the

tree’s deterministic prediction.

Decision trees can be a powerful approach for a wide

array of applications, but they also have several signifi-

cant drawbacks. In particular, they are very prone to
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overfitting (e.g., Brodley and Utgoff 1995), fitting to the

noise of the training data rather than just the underlying

relationships. They also do not convey any information

about forecast uncertainty, as would be the case in a

probabilistic framework. RFs are used instead to alle-

viate these concerns by producing a probabilistic fore-

cast in a way that can significantly decrease error from

overfitting the supplied training error with only a slight

increase to error from oversimplistic model assump-

tions, provided the trees are sufficiently uncorrelated.

The difficulty then revolves around generating a large

set (forest) of skillful decision trees that are not strongly

correlated. The decision tree generating procedure de-

scribed above is deterministic: a given set of training

data will always produce the same decision tree. A forest

of identical decision trees, of course, adds no value over

using a single decision tree. Two additional processes—

tree bagging and feature bagging—are employed to

produce unique trees. Tree bagging produces unique

trees through a straightforward bootstrapping pro-

cedure. Specifically, a forest of size B is formed from the

n training examples by creating B samples of size n, with

replacement, from the original training data and running

the decision tree algorithm on each sample. Overfitting

due to correlated trees can still occur under this ap-

proach, particularly if a small subset of the original

features contains much more robust predictors of the

verifying category than the rest (Breiman 2001; Murphy

2012). To overcome this problem, feature bagging is also

employed, whereby only a random subset of the m orig-

inal input predictors is considered at each decision node.

The size of the random subset is denoted here as S: 1 #

S # m. This combination can result in a set of B largely

uncorrelated trees, each of which is individually fairly

skillful.

With any machine learning algorithm, there are nu-

merous considerations in the actual model construction

that manifest themselves in tunable parameters. Com-

pared with other machine learning algorithms, such as

gradient boosting or support vector machines, RFs are

often praised for their relative insensitivity to their pa-

rameters with respect to model performance, but it is

nevertheless important to explore the parameter space

in order to realize the full utility of the algorithm. The

forest sizeB is perhaps themost obvious parameter. The

general relationship between model performance and

B is well known and consistent across all prediction

problems; it starts quite low at very low B, initially in-

creases rapidly with increasing B, and then slowly as-

ymptotes to some threshold performance limit as the

relationships between input features have been fully

explored by the forest and the inclusion of new trees

becomes redundant. Larger forest sizes require more

computational expense, so the goal is to select B such

that it is small enough to be computationally tractable

but large enough to be near the performance limit.

Another parameter noted above is S, the number of

features to consider at each node split. If this number is

too small, model performance may suffer from only

considering irrelevant or otherwise unpredictive fea-

tures in the context of the node; if S is too large, per-

formance will also suffer because of underdispersive

trees producing an overfit forest solution. Another fre-

quently explored parameter is the splitting criterion

evaluation function. Most commonly used is either the

Gini impurity or the information gain; past studies have

shown that this choice is not important formany forecast

problems. Information gain is used in this study; it can be

expressed for a training set T, candidate splitting feature

xa, and candidate split value ya as

IG(T, x
a
, y

a
)5H(T)2H(Tjx

a
, y

a
) , (A1)

whereH(T) is the so-called entropy of a tree, defined for

each of the K verifying categories, with each category i

having forecast probability pi, as

H(T)52�
K

i51

p
i
log

2
p
i
. (A2)

The chosen splitting feature and split value are selected

among those considered that maximize Eq. (A1) (e.g.,

Quinlan 1986; Murphy 2012). However, there are two

other parameters that have the most substantial influ-

ence on model performance. The first, denoted Z, is the

minimum number of training examples required to

split a node. Traditionally, RFs create a leaf only once a

node is ‘‘pure’’; that is, all the remaining training ex-

amples associated with that node have the same labels

(event outcomes). In this way, each tree makes a cate-

gorical prediction of the predictand outcome, and

probabilities are generated only in counting the pro-

portion of trees in the forest making a particular forecast.

However, this can make predictions from an individual

tree very susceptible to the outcome of a particular

historical case and, in some cases, result in substantial

overfitting. Instead, by increasing Z, an RF can be al-

lowed to make ‘‘impure’’ leaves; at these nodes, an in-

dividual tree makes a probabilistic prediction based on

the proportion of remaining training examples exhibit-

ing each event class rather than continuing to split based

on the remaining training data. Making S too large,

however, can result in underfitting—lumping data as

indistinguishable when there are, in fact, underlying

discernible distinctions among remaining training ex-

amples with different labels. The last parameter,
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denoted P, is not actually an RF algorithm parameter at

all. When PCA is performed, there is always a question

about the number of components to retain. Though

there are some heuristics (e.g., North et al. 1982), there is

no definitive method to know a priori how many re-

tained components P will produce the most skillful

forecasts (Wilks 2011). If P is too small, valuable fore-

cast data are discarded, and predictive performance

consequently suffers. However, if it is too large, the re-

tained PCs eventually become essentially just noise, and

theRF, by fitting to these predictor values in the training

data, will yield an overfit model that does not generalize

to unseen data. Experiments that will not be discussed

herein revealed that using information gain to de-

termine splits and letting B 5 1000 produced skill near

that of an infinitely large forest, and skill was insensitive

to modifications of these settings, including modest in-

creases in the forest size beyond this point. However, the

Z–S–P parameter space is explored for the models

trained, and those results are presented in appendix B.

One final consideration concerns the handling of rare

event scenarios. For rare event problems, one neces-

sarily has many more examples of the common event

class in comparison to the rare class, leaving the rare

class somewhat underrepresented in the learning prob-

lem, and model fitting that is done with respect to the

rare class is often too dependent on a small number of

examples. An approach that has been applied with some

success in past studies (e.g., Ahijevych et al. 2016) is to

sample training data disproportionately from the rarer

classes so that the number of training examples associ-

ated with each event class is approximately equal. A

comparison between this so-called ‘‘balanced’’ sampling

and unmodified ‘‘unbalanced’’ sampling is also made

and the results presented in appendix B.

b. Logistic regression

One sensitivity experiment compares model perfor-

mance as a function of the model algorithm by com-

paring skill of forecasts produced by RFs with those

produced with logistic regression. LR is inmany senses a

simpler model than an RF, since the structural form of

the relationship between the predictors and the pre-

dictand is predefined before training. RFs, in contrast,

make few assumptions about the relationships between

the predictors and the predictand, allowingmore diverse

diagnoses of underlying relationships. However, this

lack of assumptions can result in overfitting. As an ap-

plication of the generalized linear model, LR assumes a

linear predictors–predictand relationship via the logit

function. In LR, a single regression equation, or K

equations for a multicategory problem with K cate-

gories, is computed to represent the probability of the

outcome being category k, given the set of input pre-

dictors x. In particular, verifying probabilities are com-

puted using the softmax function:

P(y5 kjx)5 ex
Twk

�
K

j51

ex
Twk

. (A3)

In training an LR model, the goal is to determine the

optimal weights wk associated with each predictor in

order to yield the most accurate predictions for each

event class. As with RF models, LR can be prone to

overfitting if unconstrained. For RFs, one afore-

mentioned approach to alleviate this problem is to

increase the above-termed Z parameter, which stops

node splitting earlier on and makes the model less

tailored to the specific training data supplied to it.

Complexity in LR can be thought of as being analo-

gously represented by large weights, or regression

coefficients. To ensure better generalizability of the

trained regression equations, it is often good practice

to penalize large weights through a process known as

regularization. When this is done, the computation of

optimal weights can be represented as a minimization

problem with two terms. For 1) a matrix Ywith binary

elements that are nonzero if and only if training ex-

ample i has associated verifying category k and 2) a

model outputting a probability matrix P for each

training example and category, the multinomial loss

J to be minimized can be computed as

J[Y,P(w)]5
1

2
wTw2

1

CN
�
N

i51
�
K

k51

Y
i,k

log(P
i,k
), (A4)

where C represents the extent of regularization, with

smaller values indicating that large weights are penal-

ized more than with larger values of C. Alternative ap-

proaches to regularization exist (e.g., Pedregosa et al.

2011; Murphy 2012) and are explored to some degree in

sensitivity experiments of appendix B.

c. Computational considerations

Other machine learning algorithms do not scale well

to the high dimensionality of the forecast problem ex-

plored here. While time to train a model is not of pri-

mary concern for operational forecasting since it is

performed only once (or periodically) offline, there are

nevertheless some practical considerations; for example,

models that take months or longer to train would be

unlikely to be realistic choices. The ‘‘online’’ forecasting

component—that is, the time required to take a new

forecast, input it into a trained model, and receive a

forecast—is of operational concern, but all of the
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forecast techniques considered here can produce fore-

casts in a matter of minutes, and the small differences

are not considered to be of practical concern. Using the

random forest classification heuristic of considering the

square root of the total number of features at each node

split (Geurts et al. 2006), the computational complexity

of training an RF of size B from N training examples

with F features (N . F) may be expressed as

O[B
ffiffiffiffi
F
p

N log(N)] and may be readily parallelized

across trees or within trees. Some algorithms are qua-

dratic or even cubic (e.g., Cortes andVapnik 1995) in the

number of training examples and do not parallelize as

readily. LR is linear in the number of training examples

but requiresmatrixmultiplication, a process that yields a

computational complexity of O(NF2). PCA pre-

processing, and dimensionality reduction more gen-

erally, acts both to make learning algorithms more

computationally tractable and also to reduce overfitting

by alleviating the so-called ‘‘curse of dimensionality.’’

APPENDIX B

Results: Parameter Tuning

RF model parameters were tuned for each region and

lead time separately through the fourfold cross-validation

procedure employed throughout the study. Overall, the

optimal parameters were found not to vary with the two

different lead times, but did vary for two of the parame-

ters as a function of forecast region, at least to an extent;

the full results appear in Table B1. For the S parameter—

the number of predictors considered for each node split—

the default heuristic of the square root of the total num-

ber of features was found to maximize RPSS for all re-

gions and lead times. In all instances where both were

tested, unbalanced sampling from the event classes in

proportion to their true observed frequencies out-

performed balanced equal sampling from each event

class, in contrast toAhijevych et al. (2016) and others; the

finding appeared to be attributable to biased probabilities

produced from the balanced sampling technique. For the

Z parameter, the minimum number of remaining training

examples in an impure parameter subspace required to

perform a further node split was generally found to be

around 120. Lesser values maximized skill in the western

regions, with values of 30 maximizing skill in the SW

and ROCK regions and Z 5 4 producing the best skill

over PCST.A couple of the larger regions of the east, SE

and MDWST, maximized RPSS with a value of 240,

although the sensitivity between Z 5 120 and 240 was

small for all regions. For P in the CTL_PCA models,

skill was generally maximized with P 5 30, that is, re-

taining the 30 PCs that explain the most variance of the

entire GEFS/R predictor set. For most regions, there

was very limited sensitivity in the P5 30–40 interval—

although there was larger sensitivity outside this in-

terval—and P 5 40 was found to produce slightly

better skill in the NGP region. The PCST region was

again the main exception, where P 5 60 was found to

maximize cross-validation RPSS.

LR model parameters were tuned using an identi-

cal framework to ascertain the type of regularization,

either based on a L1 norm, which penalizes nonzero

weights, or L2 norm—described in appendix A—

which penalizes large magnitude weights. L2 regu-

larization was consistently found to produce superior

results (Table B2), perhaps because the number of

TABLE B1. Optimal RF parameters obtained in cross validation

for the Z–S–P parameter space. SQRT indicates the square root of

the total number of predictors; symbols are otherwise as described

in the text. Evaluated values were 1, 2, 4, 8, 16, 30, 60, 120, 240, and

480 for Z and 20, 25, 30, 40, 50, 60, 70, 80, 90, and 100 for P.

Region S parameter Z parameter P parameter

ROCK SQRT 30 30

NGP SQRT 120 40

MDWST SQRT 240 30

NE SQRT 120 30

PCST SQRT 4 60

SW SQRT 30 30

SGP SQRT 120 30

SE SQRT 240 30

TABLE B2. Optimal LR parameters obtained in cross validation for theC parameter and regularization type for all lead times and regions.

Evaluated for C were 0.0001, 0.0008, 0.0060, 0.0464, 0.359, 2.78, 21.54, 167.8, 1291, and 10 000.

Region Regularization C parameter, day 2 C parameter, day 3

ROCK L2 0.0001 0.0001

NGP L2 10 000 0.0008

MDWST L2 0.0001 0.0464

NE L2 2.78 10 000

PCST L2 0.0001 0.0001

SW L2 0.359 0.0001

SGP L2 0.0008 0.0464

SE L2 21.54 0.0008
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retained PCs was already taken from the P parameter

in the RF experiments, acting to nullify many po-

tential nonzero weights of higher-numbered PCs.

Unlike the RF experiments, there were occasionally

some large differences in the obtained optimal reg-

ularization parameter value C between lead times

within the same region. Generally, models per-

formed better with more regularized solutions, but

there were some notable exceptions, with the day 2

NGP model and day 3 NE model obtaining optimal C

parameter values on the other end of the spectrum.
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